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Review of Last Week
1 Survival data is almost always subject to incompleteness –right censoring is the most common but other forms abound.
2 Survival analysis methods must account for censoring to (a)make efficient use of the available data and (b) avoid bias dueto informative censoring.
3 The independent censoring assumption says survivalinformation from participants in any subgroup censored attime t can be recovered from those in the same subgroupwho remained at risk at time t .
4 The survivor function and hazard function are distinct butrelated quantities central to survival analysis techniques

h(t) =
− d

dt S(t)
S(t)

S(t) = exp

(
−
∫ t

0
h(u)du

)
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Characteristics of Parametric Survival Models
Parametric models fully specify the shape of the distributionof the survival times.
Pros

1 Allows analytical calculation of quantities of interest:survivor function, hazard, mean survival times, etc.
2 Very efficient inference from data when model iscorrect.

Cons
1 May lead to very bad estimates if our model is incorrect!
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Parametric Survival Distributions
Dist Density f Hazard h Survivor S Notes

Exponential(λ) f (t) = λe−λt , h(t) = λ S(t) = e−λt

Weibull(α, λ) f (t) = αλ(λt)α−1e−(λt)α h(t) = αλαtα−1 S(t) = e−(λt)α
p > 1 ↑
p < 1 ↓

p = 1,Exp
Gamma(λ, β) f (t) = λβ tβ−1e−λt

Γ(β) No closed form No closed form β > 1 ↑
β < 1 ↓

β = 1,Exp
Gen-Gamma(λ, β, p) f (t) = pλpβ tpβ−1e−(λt)p

Γ(β) No closed form No closed form p = 1,Gamma
β = 1,Weibull
β = p = 1,Exp
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Some notable properties
1 Memoryless property of the exponential distribution: probabilityof failure depends only on the time increment

P(T > s + t |T > s) = P(T > t)

2 Piecewise-exponential can be a simple approach toapproximate more complex hazards.
3 Weibull distributions are often a good starting point forparametric survival modeling in practice.
4 Weibull hazards are especially useful in regression modellingof survival data, as they can be viewed as proportionalhazards and accelerated failure time (AFT) models.
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Roadmap
1 Parametric Survival Models
2 Worked Example
3 Estimating Survival & Hazard Functions
4 Nonparametric Survival Models
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Worked Example: Weibull Distribution
The Weibull(α, λ) has the following hazard function

h(t) = αλαtα−1

The cumulative hazard takes the following form
H(t) :=

∫ t

0
h(u)du = [(λu)α]t0 = (λt)α

The survivor function takes the form
S(t) := exp(−H(t)) = exp (−(λt)α)
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Worked Example: Weibull Distribution
The median survival time is calculated by setting the survivalfunction equal to 1/2 and solving for t !

S(t) = exp (−(λt)α) = 1/2
=⇒ −(λt)α = − log(2)

=⇒ λt = log(2)1/α

=⇒ t1/2 =
log(2)1/α

λ

The mean survival time is calculable using the moment generatingfunction (MGF) of Weibull distribution.
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R example
1 #Plot s u r v i v a l funct ion
2 weibSurv <− funct ion ( t , shape , scale ) {pweibull ( t , shape=shape , scale=scale , lower . t a i l =F ) }
3 curve ( weibSurv ( x , shape =1.5 , scale =1 / 0 .03) , from=0 , to=80 , yl im=c ( 0 , 1 ) , ylab= ” Su rv iv a l p r o b a b i l i t y ” , xlab= ”Time ” , co l = ” red ” )
4 l i n e s ( x=seq ( 0 , 80 , by =0.1 ) , sapply ( seq ( 0 , 80 , by =0.1 ) ,FUN=function ( x ) {weibSurv ( x , shape =0.75 , scale =1 / 0 .03)

} ) , co l = ” black ” )
5 l i n e s ( x=seq ( 0 , 80 , by =0.1 ) , sapply ( seq ( 0 , 80 , by =0.1 ) ,FUN=function ( x ) {weibSurv ( x , shape=1 , scale =1 / 0 .03) } ) ,co l = ” blue ” )
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R Example

Figure: Example Weibull Survival CurvesEthan Ashby
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R example
1 #Plot hazard funct ion
2 weibHaz <− funct ion ( x , shape , scale ) {dweibull ( x , shape=shape , scale=scale ) / pweibull ( x , shape=shape , scale=scale , lower . t a i l =F ) }
3 curve ( weibHaz ( x , shape =1.5 , scale =1 / 0 .03) , from=0 , to=80 , ylab= ” Hazard ” , xlab= ” Time ” , co l = ” red ” )
4 l i n e s ( x=seq ( 0 , 80 , by =0.1 ) , sapply ( seq ( 0 , 80 , by =0.1 ) ,FUN=function ( x ) {weibHaz ( x , shape =0.75 , scale =1 / 0 .03)

} ) , co l = ” black ” )
5 l i n e s ( x=seq ( 0 , 80 , by =0.1 ) , sapply ( seq ( 0 , 80 , by =0.1 ) ,FUN=function ( x ) {weibHaz ( x , shape=1 , scale =1 / 0 .03) } ) ,co l = ” blue ” )
6 #Plot random event times from weibul l d i s t r i b u t i o n
7 times = rweibul l ( n=500 , shape =1.5 , scale =1 / 0 .03)
8 h i s t ( times , xlab= ” Time ” , y= ” Count ” )
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R Example

Figure: Example Weibull Hazard FunctionsEthan Ashby
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Check your understanding
Suppose the following threecurves describe the hazardover 80 years of life from thefollowing three causes.

1 Congenital Rubella
2 Alzheimers
3 Influenza

Can you match the disease tothe shape of each hazardcurve?
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An R Note

Be sure to check parametrizations! Above, we described
Weibull(α, λ) which represents the ‘shape” and “rate”parametrization. R refers to Weibull(α, β) distribution are in
the “shape” and “scale” parameters, where λ = 1/β.
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Roadmap
1 Parametric Survival Models
2 Worked Example
3 Estimating Survival & Hazard Functions
4 Nonparametric Survival Models
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Estimation in Parametric Models via MaximumLikelihood
The beauty of parametric models is that they fully describe thedata generating process, enabling calculation of survivorfunctions, hazards, mean/median survival times, and more.
In practice, we assume the shape of the survival time distribution(ex. Exp(λ)), but use data to estimate values for the parameters(λ). Once the parameters are estimated, we can convert them intoestimates of quantities of interest (e.g., hazard).
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Worked Example
Suppose we assume T1, . . . ,Tn

iid∼ Exp(λ). Our goal is to estimate λ.Suppose that every survival time {Ti}n
i=1 is completely observed.We write the likelihood of our data.

L(λ;T1, . . . ,Tn) := f (T1;λ) · . . . · f (Tn;λ) =
n∏

i=1

λe−λTi

= λne−λ
∑n

i=1 Ti

Our goal is to find the value of λ that maximizes the likelihood ofthe data. This is equivalent to maximizing the log-likelihood.
log L(λ) = ℓ(λ) = n log(λ) +−λ

n∑
i=1

Ti
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Worked Example
To solve for the maximum likelihood estimate λ̂, we take thederivative wrt λ and set it equal to 0.

d
dλ

ℓ(λ) = 0

=⇒ n
λ
=

n∑
i=1

Ti

=⇒ λ̂ =

[∑n
i=1 Ti

n

]−1

Hence, when the survival times are all completely observed andare from an exponential distribution, the MLE of λ is thereciprocal of the mean survival time or the mean event rate.
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Worked Example
Suppose T1, . . . ,Tn

iid∼ Exp(λ). Our goal is to estimate λ. Supposegoal is to compute the MLE when some observations are rightcensored.
Let δi = I(Ti ≤ Ci) denote if the i-th survival time was censored.Then the likelihood is

L(λ) =
n∏

i=1

f (λ,Ti)
δi S(λ,Ti)

1−δi

Each unit with an observed (δi = 1) survival time contributes
f (λ,Ti). Censored (δi = 0) units have unknown survival times thatare known to exceed Ti . Hence contribution is S(λ,Ti).

Ethan Ashby
Lecture 2



Parametric Ex Estimation Nonparametric

Worked ExampleUnder the exponential distribution assumption, the likelihoodwith some observations censored is
L(λ) =

n∏
i=1

(λe−λTi )δi (e−λTi )1−δi

= λ
∑n

i=1 δi e−λ
∑n

i=1 Tiδi+Ti (1−δi ) ≡ λ
∑n

i=1 δi e−λ
∑n

i=1 Ti

For ease of estimation, find value of λ which maximizes thelog-likelihood.
ℓ(λ) =

(
n∑

i=1

δi

)
log(λ)− λ

(
n∑

i=1

Ti

)
d

dλ
ℓ(λ) = 0 =⇒ λ̂ =

∑n
i=1 δi∑n
i=1 Ti
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Worked Example
In the exponential model with independent right censoring,the MLE of the parameter λ is

λ̂ =

∑n
i=1 δi∑n
i=1 Ti

The blue term is the total number of observed events.The red term is the person-time, or the total time that unitswere observed to be at risk prior to an event/censoring.
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Worked Example
Maximum likelihood offers a framework to estimate keyparameters of survival models from data. But anotherimportant task is quantifying uncertainty in our estimate.
A key quantity we will want to calculate is the Information.

In(λ) := − d2

dλ2 ℓ(λ)

In the exponential model
In(λ) =

∑n
i=1 δi

λ2
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Worked Example
In large samples, the variance of the MLE λ̂ is the reciprocalof the information [In(λ)]−1. The fundamental result ofFisher & Cramer endows the MLE with the followingamazing property.

√
n(λ̂− λ)⇝ N(0, [I1(λ)]−1)

This is a deep result that implies that in large samples, λ̂converges its target λ and exhibits uncertainty in the form ofa normal distribution with known variance. This enables usto carry out tests and confidence intervals for λ!
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For our purposes: in R
1 l i b r a r y ( f lexsurv ) ; l i b r a r y ( s u r v i v a l ) ; l i b r a r y ( t idyverse )
2 # F i t exponential s u r v i v a l model
3 expmodel <− f lexsurv : : f lexsurvreg ( Surv ( rectime , censrec )˜1 , data= f lexsurv : : bc , d i s t = ” exponential ” )
4
5 plot ( expmodel , type= ” s u r v i v a l ” )
6 plot ( expmodel , type= ” hazard ” )
7 plot ( expmodel , type= ”cumhaz” )
8 summary ( expmodel , type= ” median ” )
9 summary ( expmodel , type= ”mean” )

10 #OR use ” f i tparametr ic ” funct ion
11 source ( ” f i tparametr ic . R” )
12 expmodel <− f i tparametr i c ( Surv ( bc$rectime , bc$censrec ) ,d i s t = ” exp ” )
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Summary
1 Parametric survival models completely determine thedistribution of survival times using a finite set ofparameters which need to be estimated from data.
2 In practice, we assume the shape of the distribution(e.g., Weibull), and use data to estimate the unknownparameters.
3 In parametric models, maximum likelihood is theframework we use to estimate and quantify uncertaintyin parameter estimates from data.
4 Parametric models are comprehensive but not robust –may produce misleading results if the assumed shape isincorrect!
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Roadmap
1 Parametric Survival Models
2 Worked Example
3 Estimating Survival & Hazard Functions
4 Nonparametric Survival Models
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Why go nonparametric?
The use of parametric models are often justified using

1 Convenience: ease of converting between survival quantitiesof interest, relatively simple estimation.
2 Efficient: when correctly specified, parametric models produceestimators w/ smallest possible variances.

Reasons why we may want to go nonparametric
1 Agnosticism around choice of model shape.
2 True survival experience unlikely to adhere to rigidparametric assumptions.
3 Conclusions that avoid making non-essential statisticalassumptions.
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The Kaplan-Meier Estimator
The Kaplan-Meier Estimator is the product over the failuretimes of the conditional probabilities of surviving to the nextfailure time.

Ŝ(t) =
∏
ti≤t

(
1 − di

ni

)

Where ni is the number of individuals in the risk set at time tiand di is the number of individuals who failed at time ti .
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